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Preparation of Cyclic Disulfides from Bisthiocyanates
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Abstract: A mild method for the preparation of disulfides from acyclic bisthiocyanates is presented. The method involves
cleavage of thiocyanates with TBAF to form the cyclic disulfides in moderate to good yield. The method can also be applied
to the synthesis of acyclic disulfides. Base-sensitive functionalities, such as esters, are unaffected by the reaction conditions.
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The disulfide moiety occurs ubiquitously in proteins and is also found in a variety of small molecule
natural products and pharmacologically active compounds.' In addition, cyclic and acyclic disulfides are
useful intermediates in synthesis® and in the preparation of adsorbed monolayers.” Acyclic disulfides are
typically prepared through oxidation of thiols.* Similarly, cyclic disulfides are typically prepared by the
oxidative dimerisation of o,e-dithiols (e.g. I, NEts;* Bry;® KsFe(CN)s:” CCly, NEts;® H,0./KI/AcOH;’
Pb(OAc)l42, S;'° KO,y and may also be prepared by reacting o,w-dihalogenated compounds with
NaZS/Sg.

Thiocyanates have also been used in the preparation of disulfides. Thus, treatment of thiocyanates
with base (e.g. NaOH or NH3) has been shown to generate disulfides in moderate to good yield via the
process shown diagrammatically in Scheme 1."* More recently, reaction of o,w-bisthiocyanates with
samarium diiodide'* or tetrathiomolybdate'® has been employed in the synthesis of cyclic disulfides. As
part of a program directed towards the synthesis of functionalised cyclic disulfides for monolayer
adsorption studies,'® we required a simple route to disulfides from thiocyanates that would not affect
base sensitive functionality (specifically esters) and which did not require specialist reagents or reaction
conditions. Herein we report that tetrabutylammonium fluoride (TBAF) generates disulfides from the
corresponding thiocyanates in moderate to good yield under mild conditions.
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Scheme 1: Formation of disulfides from thiocyanates (Nu"= OH’, NH; etc.)?

Results are summarised in the Table. The starting bisthiocyanates were prepared by literature
methods'” and, after purification, were allowed to react with tetrabutylammonium fluoride in
tetrahydrofuran in the quantities shown.
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Table: Preparation of disulfides from bisthiocyanates by treatment with TBAF




5-Membered (entries 3, 4, 5), 6-membered (entry 1) and 7-membered (entry 2) cyclic disuifides were
all formed under the reaction conditions in moderate to good yields. Esters (entries 4 and 7) and ketals
(entry 3) were unaffected by the mild experimental procedure however, as expected, silyl ethers were
cleaved (entries 5 and 6). Acyclic disulfides can also be formed under these reaction conditions
(entries 6, 7, 8) allowing the formation of the sulfur-rich species shown in entries 6 and 7. While such
disulfide bridged dithians have been proposed previously as the products from in situ oxidation of the
corresponding thiols'® this report constitutes the first successful synthesis of such compounds.

The mechanism for this reaction presumably involves fluoride acting as nucleophile via the process
shown in Scheme 1. There are, to the best of our knowledge, no reports of fluoride attack at the carbon
of organic thiocyanates in the literature, and therefore we examined the use of an alternative source of
fluoride for this transformation. Treatment of the bisthiocyanate (7) with KF/18-crown-6 in THF under
anhydrous conditions also furnishes the corresponding disulfide (8) (in 60% yield) further supporting the
proposed mechanism. While we could not detect FCN in the conversion of dodecyl thiocyanate to
dodecyl disulfide (entry 8) with continual monitoring of the reaction by YF.n.m.r., this material is
known to be unstable and to polymerise rapidly,19 and it may be that the formation of a stable FCN
polymer or oligomer provides the driving force for the reaction.

Further studies on this reaction are underway, and the properties of monolayers formed from
adsorption of the product disulfides on gold surfaces will be reported in due course.

General Experimental procedure: A solution of tetrabutylammonium fluoride (4.9ml, IM THF
solution, Aldrich) was added to a solution of the bisthiocyanate (2.4 mmol) in dry THF (7ml). The
solution was stired overnight at room temperature, evaporated to dryness and the residue
chromatographed on silica. 'H-n.m.r., 3C-n.m.r., mass spectra and microanalyses were obtained for all
new compounds.”’
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